Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification.

نویسندگان

  • Moshe Goldsmith
  • Yacov Ashani
  • Yair Simo
  • Moshe Ben-David
  • Haim Leader
  • Israel Silman
  • Joel L Sussman
  • Dan S Tawfik
چکیده

A preferred strategy for preventing nerve agents intoxication is catalytic scavenging by enzymes that hydrolyze them before they reach their targets. Using directed evolution, we simultaneously enhanced the activity of a previously described serum paraoxonase 1 (PON1) variant for hydrolysis of the toxic S(P) isomers of the most threatening G-type nerve agents. The evolved variants show ≤340-fold increased rates and catalytic efficiencies of 0.2-5 × 10(7) M(-1) min(-1). Our selection for prevention of acetylcholinesterase inhibition also resulted in the complete reversion of PON1's stereospecificity, from an enantiomeric ratio (E) < 6.3 × 10(-4) in favor of the R(P) isomer of a cyclosarin analog in wild-type PON1, to E > 2,500 for the S(P) isomer in an evolved variant. Given their ability to hydrolyze G-agents, these evolved variants may serve as broad-range G-agent prophylactics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents.

Phosphotriesterase (PTE) from soil bacteria is known for its ability to catalyze the detoxification of organophosphate pesticides and chemical warfare agents. Most of the organophosphate chemical warfare agents are a mixture of two stereoisomers at the phosphorus center, and the S(P)-enantiomers are significantly more toxic than the R(P)-enantiomers. In previous investigations, PTE variants wer...

متن کامل

Bacterial detoxification of organophosphate nerve agents.

Bacterial enzymes have been isolated that catalyze the hydrolysis of organophosphate nerve agents with high-rate enhancements and broad substrate specificity. Mutant forms of these enzymes have been constructed through rational redesign of the active-site binding pockets and random mutagenesis to create protein variants that are optimized for the detoxification of agricultural insecticides and ...

متن کامل

Directed evolution of hydrolases for prevention of G-type nerve agent intoxication.

Organophosphate nerve agents are extremely lethal compounds. Rapid in vivo organophosphate clearance requires bioscavenging enzymes with catalytic efficiencies of >10(7) (M(-1) min(-1)). Although serum paraoxonase (PON1) is a leading candidate for such a treatment, it hydrolyzes the toxic S(p) isomers of G-agents with very slow rates. We improved PON1's catalytic efficiency by combining random ...

متن کامل

Final Report: Structural Analysis and Bioengineering of Thermostable Pyrococcus furiosus Prolidase for the Optimization of Organophosphorus Nerve Agent Detoxification

The aims of this project were to structurally study and bioengineer thermostable prolidases from Pyrococcus furiosus (Pf) and horikoshii (Ph) to enable their use for oganophosphorus nerve agent detoxification. Pf prolidase contains one dinuclear Co metal-center/monomer and has optimal activity at 100?C, exhibiting no activity without Co2+ or at temperatures <50?C. Requirement for metal ions is ...

متن کامل

Human carboxylesterase 1 stereoselectively binds the nerve agent cyclosarin and spontaneously hydrolyzes the nerve agent sarin.

Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2012